Arithmetic Correlations Over Large Finite Fields
نویسندگان
چکیده
منابع مشابه
On Restricted Arithmetic Progressions over Finite Fields
Let A be a subset of Fp , the n-dimensional linear space over the prime field Fp of size at least δN (N = p), and let Sv = P −1(v) be the level set of a homogeneous polynomial map P : Fp → Fp of degree d, for v ∈ Fp . We show, that under appropriate conditions, the set A contains at least cN |S| arithmetic progressions of length l ≤ d with common difference in Sv, where c is a positive constant...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملFactoring Multivariate Polynomials over Large Finite Fields
A simple probabilistic algorithm is presented to find the irreducible factors of a bivariate polynomial over a large finite field. For a polynomial f(x, y) over F of total degree n , our algorithm takes at most 4.89, 2 , n log n log q operations in F to factor f(x , y) completely. This improves a probabilistic factorization algorithm of von zur Gathen and Kaltofen, which takes 0(n log n log q) ...
متن کاملDense Arithmetic over Finite Fields with the CUMODP Library
CUMODP is a CUDA library for exact computations with dense polynomials over finite fields. A variety of operations like multiplication, division, computation of subresultants, multi-point evaluation, interpolation and many others are provided. These routines are primarily designed to offer GPU support to polynomial system solvers and a bivariate system solver is part of the library. Algorithms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2015
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnv157